Estimation of Garch Models from the Autocorrelations of the Squares of a Process by Richard T. Baillie

نویسنده

  • HUIMIN CHUNG
چکیده

This paper shows how the parameters of a stable GARCH(1, 1) model can be estimated from the autocorrelations of the squared process. Speci®cally, the method applies a minimum distance estimator (MDE) to the sample autocorrelations of the squared realization. The asymptotic ef®ciency of the estimator is calculated from using the ®rst g autocorrelations. The estimator can be surprisingly ef®cient for quite small numbers of autocorrelations and, in some cases, can be more ef®cient than the quasi maximum likelihood estimator (QMLE). Also, the estimated process can better ®t the pattern of observed autocorrelations of squared returns than those from models estimated by maximum likelihood estimation (MLE). The estimator is applied to a series of hourly exchange rate returns, which are extremely non Gaussian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Outliers on the Identification and Estimation of Garch Models

This paper analyses how outliers affect the identification of conditional heteroscedasticity and the estimation of generalized autoregressive conditionally heteroscedastic (GARCH) models. First, we derive the asymptotic biases of the sample autocorrelations of squared observations generated by stationary processes and show that the properties of some conditional homoscedasticity tests can be di...

متن کامل

Regime Switching Garch Models

We develop univariate regime-switching GARCH (RS-GARCH) models wherein the conditional variance switches in time from one GARCH process to another. The switching is governed by a time-varying probability, specified as a function of past information. We provide sufficient conditions for geometric ergodicity and existence of moments. Because of path dependence, maximum likelihood estimation is no...

متن کامل

Estimation of Value at Risk (VaR) Based On Lévy-GARCH Models: Evidence from Tehran Stock Exchange

This paper aims to estimate the Value-at-Risk (VaR) using GARCH type models with improved return distribution. Value at Risk (VaR) is an essential benchmark for measuring the risk of financial markets quantitatively. The parametric method, historical simulation, and Monte Carlo simulation have been proposed in several financial mathematics and engineering studies to calculate VaR, that each of ...

متن کامل

Confidence Intervals for the Autocorrelations of the Squares of GARCH Sequences

We compare three methods of constructing confidence intervals for sample autocorrelations of squared returns modeled by models from the GARCH family. We compare the residual bootstrap, block bootstrap and subsampling methods. The residual bootstrap based on the standard GARCH(1,1) model is seen to perform best.

متن کامل

Comparing the performance of GARCH (p,q) models with different methods of estimation for forecasting crude oil market volatility

The use of GARCH models to characterize crude oil price volatility is widely observed in the empirical literature. In this paper the efficiency of six univariate GARCH models and two methods of estimation the parameters for forecasting oil price volatility are examined and the best method for forecasting crude oil price volatility of Brent market is determined. All the examined models in this p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001